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1. One-dimensional Splines

The purpose of this section is to give an introduction to some outstanding
properties of one-dimensional splines. We are not interested in giving a very
detailed discussion of this vast subject but only in pointing out some results

which serve to illustrate some properties of multivariate splines.

l1.1. The Cubic Spline

Consider knots t, <t <tg <ttt <ty of a real interval [0,T] and
real data Vs Fos vees Yo One of the oldest problems considered by mathema-
ticians and engineers has been that of finding a '"smooth" curve joining the
points (ti,yi) € IRZ. Or, in mathematical terms, to find a function

g: [0,T] >R such that g takes the value A at t, 1i=1,...,n.

i

g(ti) = ¥y i=1,...,n (1.1.1)

Obviously, this problem does not have a unique solution and the choice
of a solution will depend on many factors, some of which are:
-- Smoothness properties

-- Convergence properties

Cost of computation.

Even if the first two properties have a great importance, the third one is
usually the one determining the interpolant to be used. Among the sglutions
used in the past, the most popular one was the polynomial interpolation. As
it is known, we can find a unique polynomial Py of degree n-1 satisfying
(1.1.1). Moreover, an axplicit expression for p, can be given in terms of

Lagrange polynomials



n
p. = @I y. R 1.1.2)
n =1 i1
where
it (x-—xj)
= i* ‘
li(x) __iﬁi;zy—-— {1.1.3)
n
w(x) = I (x-xi) . (1.1.4)
i=1

Thus, the solution P, can be easily written as o linear combination
of well-known polynomials. This is a very interesting property, even if
(1.1.2) is not used for practical calculations because it is cheaper to use
the Newton's formula (cf. [ 6 ]).

Another interesting property of the interpolation polynomial is that it
can be differentiated infinitely many times and each derivative is still a
polynomial and can be easily evaluated using a Horner's scheme. This last
assertion is only partly true because the evaluation of a polynomial of
degree n-1 requires n-1 multiplications and for large n this could become
very expensive.

However, the main trouble arising with polynomail interpolation is mainly
due to the fact that they are too smooth and hence too inflexible. This leads
to osc}llations when the number of points is high (more than 20). Indeed,
the interpolation polynomials have very bad approximation properties except
for a small class of analytic functions (cf. [ 6 1.

Schoemberg [ 25 ] found the way to avoid the problems coming from the

inflexibility of polynomials and still keep their nice properties: he intro-



duced the use of piecewise polynomials matched together by continuity condi-
tions. He called the new class of functions: splines.

For a general description of polynomial splines the reader is referred
to [ 1 ], [ 9 1, [ 26 ]. In this section we will only describe one
of the most popular splines: the cubic spline.

Let S, be the set of all functions [tl,tn] satisfying the following

3

properties:

CS1l: 0 1is a cubic polynomial in i=1,...,n-1

[ti,ti+1]s

2
Cs2: 0 € C (tl.tn)

It is well known that S3 is a linear space of dimension n+2. So, if
we want to use as Interpolant a function o € S3 we must impose two additional
conditions in order to determine the n+2 free parameters. Among the most

popular conditions we have:

I. Natural 0"(t1) = O"(tn) = 0
I1. Periodic 0'(tl) = 0'(tn)
c"(tl) = G"(tn)
III. Hermite o'(tl) = ya

0"(tn) = y'

Optimal convergence rates are obtained using conditions type II or III.
In these lectures we will deal only with natural conditions. For a more detailed
description of convergence rates the reader is referred to [ 9 1, [ 26 ]

and the references therein.

€\



Let 53 be the linear space of natural cubic splines, that is, the
space of elements of S3 satisfying condition I. It is an n-dimensional
linear space and for any Yy» cevs Y€ IR there exist one and only one

element in S3 such that
c(ti) = % i=1,...,n .

This new interpolant keeps some of the most important properties of
polynomials:

1) The evaluation of ¢ at a given point t only requires multiplica-
tions and additions

2) The integral or derivative of ¢ is still a piecewise polynomial.

The advantage of this kind of interpolant is that we get 'good" conver-
gence rates even for functions being only continuous. (For details, see
[ 91, [ 2 D.

Of course we do not have an explicit formula like (1.1.2) and we will have
to solve a linear system in order to find the n free parameters determining
0. Many methods are available, but we would like to point out one that is
now able to give a generalization of splines to two and higher dimen-
sions. It is the B-spline method. (Here B stands for basis) (cf. [ 5 1,
[ 91, [ 26 D.

The idea is to construct a basis for 33 with local support, that is,
such that each element in the basis has the smallest possible support. Then
the evaluation of ¢ at a point t needs the calculation of a linear combina-
tion with only a small number of nonzero terms.

More precisely, let x_, €£X, S £X £ 0 X be the extended

-1 n n+3
partition
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Now define the n+2 B-splines by the formula

3
B,(t) = (-1D™(x, ,-x,_,) 6 (t-x; ,
1 e R T LTI EL I, + (1.1.5)
g, sttt , i=0,...,n+1 ,
where Ga o f 1is the divided difference of f with respect to
170 0%
Ay eeey ap. And the truncated power function (t-x)i is given by
3 0 t <x
(t-x)+ = 3 (1.1.6)
(t~x) t 2x
For t =t we have
n
B,(t) = 1im B _(t) . (1.1.7)
i*™m et i
n
The set {BO""’Bn+l} is a basis for S3 with the following interesting
properties:

Theorem 1.1.1. The B-splines B B defined by (1.1.5) - (1.1.7)

0" """ Tn+l

satisfy

Bi(t) = 0 t £ [x ) (1.1.8)

1-2°%142

Bi(t) > 0 t € (xi_z,x ) . (1.1.9)

i+2

/)



Moreover, for any t € [tl’fw] we have

n+l
1 B(t) = 1 . (1.1.10)
1=0

Proof. See [ 26 ].

These remarkable properties imply among others that the linear system to
be solved has a band matrix. More precisely, the matrix is tridiagonal in
the cubic case. Another interesting fact extensively used for computational
purposes is the recurrence relation which allows a very simple algorithm for
the calculation of Bi(t). For details see [ 26 ].

As we shall see in other sections, the first extension of spline techniques
to higher dimensions has been given using tensor products of one-dimensional
splines. The small support basis for that case is easily found using tensor
products of B-splines. This kind of technique can be used in interpolation,
smoothing or curve fitting, as we shall see later.

More recently there has been a lot of interest in the development of multi-
dimens’or.al B-splines. We are not going to discuss this approach during these
lectures and the interested reader is referred to [ 7 1, [ 8 ] and
the references therein.

Now we turn our attention to a different property of polynomial splines
which allows a very natural extension to higher dimensions. We begin with a
lemma.

lemma 1.1.2. Let g € Cz[tl,tn], then for any s € 53 we have:

t
n

n
[ g"(t)s"(t) dt = ] (s'"(t';) - s"'(t;)) g(ti) (1.1.11)
t i=]

4 \
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where

m
o

s!n(t;)

B'H(tn)

11
o

Proof. Integrating by parts, using the fact that s'" 1s piecewise constant
and rearranging terms we get the desired result.
Now consider any function u in Czltl,tn] interpolating the data
Yir oo Yg at tl, caey tn. And let © be the unique element in S3 inter-
polating the data. Then from (1.1.11) we have
t

n
[ ") -0"(t)) o"(t) dt = 0 .
Y

Or, if we extend o to [0,T] by

o(tl) + (t- tl)o'(tl) t<t,
o(t) = o(t) tystst
o(tn) + (t-tn)o'(tn) t >t
we have
T
[ @) - o"(t)) o"(t) dt = 0 . {1.1.12)
0

More precisely, we have the following:

Theorem 1.1.3. For any y « Hz[O,T] interpolating Yyo cees ¥ at t], coes tos

we have

(y-0,0) = 0

where o 1is the natural cubic spline interpolating the data and

w ¥i



T
(b,v) = [ u"(e) v'(t) de . (1.1.13)
0

Proof. See [ 19 ], [ 26 ].

From this theorem, usually called the First Integral Relation, we immedia-
tely get the following property that is usually taken as an equivalent defini-
tion of the natural cubic spline:

Theorem 1.1.4. The natural cubic spline O interpolating Yis ceos Vg

at ty, ...y Y, is the unique solution to the following minimization problem.

Minimize (u,}) (1.1.14)
€1
s y
vhere

; 2
Iy = {y «®”0,7T) | w(e,) =y, 1= 1,...,n} .

Proof. From the First Integral Relation we get

() = (=040, u-0+0)

0
= (pu-0, y-0) + 2(27/:-0) + (0,0)

= (u-0, y=0) + (0,0) > (o,0) , Y e Iy

This proves that o minimizes (-,¢) over Iy. The uniqueness comes
from the fact that the kernel of the semi-norm (°,°) 1is P, the set of
polynomials of degree one whose intersection with Io = {L1€H2[0,T] I u(:i)- 0}

is the element 0. This concludes the proof.



This variational definition of the natural cubic splines has lead to
several generalizations in one and many dimensions. We are going to study
some of these during these lectures. For additional details see [ 2 ],

{ 21, (91, [(13], [ 19 ], [ 26 ] and the references therein.

1,2. Smoothing Splines

Consider now the case where the data are noisy. This is the case in most

practical problems. Assume the model

y, = £t) + ¢ 1=1,...,n (1.2.1)

i

where f 18 the "smooth" unknown function to be approximated and the errors

€ i=1,...,n are assumed to be realizations of independent identically

ii
distributed normal random variabies with

E[ci] = 0
E[cf] N i=1,...,n
E[€1€j] = 0 i¢3 .

To solve this problem Schoemberg introduced the smoothing spline. This

spline is the unique solution to the following minimization problem.

T 2, 1% 2
Minimize {A[ (u"(t))%dt + = ] (u(t) -y,) . (1.2.2)

Where ) > 0 4is the smoothing parzmeter controlling the tradeof{ between
the smoothness of the solution measured by (u,p) and the approximation to

n
the data measured by %- Z (u(ti) - yi)z.
i=1
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The solution to (1.2.2) is an element of S3» that is, a natural cubic
spline. Moreover, let  be the nxn symmetric semi-positive definite matrix
such that

z2° 2z = min (om0 (1.2.3.)
yeH?[0,T]
u(ti)-z1
i=i,...,n

This matrix is well defined because the transformation associating the
interpolating cubic spline to the data Z)y ey 2 is linear and (*,*) is
quadratic.

With this definition (1.2.2) can be restated as:

n
Minimize yMinimize 1x(u,u) + % ) (u(ti)-yi)z}

ze ueH?[0,T) i=]
u(ti)-zi !
1'1,...,1’1 )
or,
T 17 2
Minimize {} z2° 0z + ;): (y - 2,) (1.2.4)
el i=1

And the solution Z to this problem is then given by

8 o= (I+m Yy . (1.2.5)

If we call Gn 3 to the smoothing spline then Z 1is the vector of the
?

values cf On ) at the knots

»

N>

. 0.2 (ty) 1=1,...,n . (1.2.6)

[ 9)
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As we shall see later, (1.2.5) is not of practical use but it allows us
to give a nice interpretation of the effect of this procedure on the data.

) being symmetric and positive semi-definite, its eigenvalues are positive
real numbers. Moreover, we have (cf. [ 11 ]) for Pys i=1,...,n; the
eigenvalues of £

0 = Py = Py < Py < ese < p . (L.2.7)

Also, for n sufficiently large and i > 10 (for practical purposes), we
have (cf. [ 33 ]),

p, Vv a l: (1.2.8)
n L4 -

i

Let Q be the orthogonal matrix diagonalizing {2, then
Q = QI Q* (1.2.9)
where I = diag (pl, os voes pn). And

Q(I + an)‘lQ*y

N>
n

or

o= 1+ DY (1.2.10)
with

z = Q*2

y = Qty .

If we write (1.2.10) in terms of each component and use (1.2.8) we obtain

1
zi n myi . (1.2.11)
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Thus we are filtering the data using a low-pass Butterworth type filter
with cutting frequency (Aa;%' to be chosen.

The choice of A from the data is a very complicated problem that has
received a lot of attention during the last years. For details see [ 4 ],
[ 17 ), [ 30 ], [ 31 1], [ 37 ], [ 38 ]. We are just going to describe
two of them. The first one was proposed by Reinsch [ 24 ] and is closely
related to the methods for choosing the regularization parameter in Tikhonov

Regularization [ 38 ].

The idea is to sclve the following equation for

n
1 2 _ 2
T LIy =0 1% = o (1.2.12)
i=]1
or, equivalently
2,2 2
1 n n) Di §2 . 02
Z : ’
n .5 (1+nApi) i

an equation that can be solved using bisection or ancother nesting method.

As it can be seen, the method is indeed very simple and the idea is
attractive. Nevertheless there is a lot of numerical and theoretical evidence
showing that in most cases the solution obtained by this method gives a spline
which tends to be too smooth, i.e., it tends to eliminate variations of the
true function (cf. [ 44 ).

The second method is called Generalized Cross-validation and was introduced
in this form by Craven and Wabba [ 4 ]. The idea of the method is more diffi-
cult to introduce and the interested reader should go to their paper [ 4 ]

for a detailed description. See also [ 17 1, [ 30 1, [ 31 ].

‘F . Y
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The GCV method reduces to the minimization over A of the following loss

function, usually referred to as the GCV function:

? 2
Z 0n X(ti))

V(A) = (1.2.13)

1
n
[ - Zer. (A(A))l

where

AQ) = @+ Y .

Special methods have been developed for the efficient computation of the

minimizer of V. For details see [ 30 ], [ 31 ], [ 43 ].

2. Thin Plate Splines

In this section we introduce one of the most popular forms of bidimensional
splines and give theoretical and computational details. We have chosen to start
with these kind of splines because we think it is a natural generalization of

the popular cubic spline even if the historic development was slightly different.

2.1. Theoretical Background
Let ti (ti, i) i=1,2,...,n be n different points of the Euclidean

plane IRZ and let =z sy 2o be n real numbers: the observations. As

1’
in the one-dimensional case, we seek for a smooth function g, called the
interpolant, such that

gt = 2, 1=1,2,...,n . (2.1.1)

In order to define a function interpolating the data we have first to
define a domain in :m2 containing the data points. There are many possible

choices and in some cases it will be defined by the problem itself, but while

S
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we have the choice we are going to take an itself as the domain of defini-
tion of the interpolant. This will allow us to use the powerful tool of
Fourier Transform. Tor other choices, see [ 3 ], [ 29 ].

Following the ideas of Theorem 1.1.4, a direct generalization of the

loss function to be minimized is given by

2 2 2
52 % %
J(w = ——% + 2—3—-}5— + ——% ) (2.1.2)
oxX Xoy 9
R2 . oy

In order to set properly the minimization problem we have to introduce

the following function space:
04%®) = {u: RR | D% el?(RD, |a]=2} (2.1.3)

where a = (al,az), la| = a + oy

D L2 is not equal to HZ(R?). Indeed we have

#(RrY < paiwr? . (2.1.4)
D_ZL2 is indeed a space of continuous functions (see [ 13 ], [ 14 ])
-2 2
and 7 is a Hilbert space with the nomm
1

+

] = (3w and uoe (2.1.5)

and P, 1s the space of polynomials of degree 1.

1
Theorem 2.1.1. If {tl} contains at least one P, -unisolvent set,

i=1,...,n 1

then there exists one and only one element ¢ belonging to D-ZLZ(IKZ) such

that
J(o) = min Jw . (2.1.6)
ped 2L2(R?)
u(th =z,

i=1,...,n

| o 3
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0 1s called the Thin Plate Spline interpolating z sesy, 2 at

r n
e, N
-2.2 mm?
Proof. is a Hilbert space continucusly inbedded in P . The set
1 1
I = {uep? 2 l i =1 } (2
z LeDd L°(R") | u(t )=zi, i=1,...,n (2.1.7)

is clearly nonvoid, and

I = I +P,
z z 1
p~ %2 nmz
1s closed in since I_+ P is closed in
P z 1 P
1 1
e
n
I_+P, = ni{s (z)}+pP
z 1 i=1 11 1
-2,2 g
and the injection from P into P is continuous.
1 1
=22
Then there exists a unique element § € 7 L minimizing ]ﬁ|2 over
1

I,. The uniqueness of 0 comes from the fact that any two elements in §

are different only in a nolynomial of degree 1 and from the hypothesis we

have I,n P, = {o}. //

In order to obtain the characterization of the solution we have to use

convex analysis. Let
0 Hel

Xg W =
e el otherwise .

Our problem can then be put in the form

minimize {J(n) + xI(U)}
peD (LA R)

(4
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and the solution 0 satisfies the inclusion equatiocn

0 € 8(J+—x1)(o) . (2.1.8)
Usi~g now the subdifferential calculus (see [ 19 ]) we get
0o = 2% - EAG (2.1.9)
g=1 ¢l '
where the Ai are coefficients, Gti are Dirac measures and A20 is the

iterated Laplacian. Moreover, it is clear that the measure Azo must be

orthogonal to P Then

1°

2 i

Yoo, p(tT) = 0 pelP
L ?
i51 i 1

Now we use the fact that (cf. [ 28 1)
Az(r2 logr) = §
to conclude that
n
i,2
o(t) = z xi[t—t |“ log |t—ti| + q(t)

i=1

where q 1s a polynomial of degree 1.

For a complete proof of these results, see [ 13 ].

2.2. The Computation of ¢

From (2.1.11) - (2.1.10) we obtain the linear system to be solved in

Al’ ey An, al, 0yy Qg:

(2.1.10)

(2.1.11)

| 2y
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e+ ol 4

n
i i
izlkiltj-t [2 log |tJ—t | + a ty 53 04

n

i
izlel = 0
n

i
121 At, = 0
n
121 Ay = 0

where K 1is an nxn gymmetric matrix and E is nx3 matrix.

®,; = led-e})? 10g |ed-et]
1

By = 8
1

(E)i2 =t

(E)yy = 1

Many problems arise. The first onme is that if K and E are full matrices

then the solution of this system requires 0(n3) operations.

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

This was not the

case for one-dimensional splines where the matrix involved in the calculations

had a band structure and the system can then be solved in 0(n)

operations.
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A second major practical problem is that (2.2.2) is ill-conditioned and a
preconditioning will be necessary to solve it successfully. Finally, from
(2.1.11) we see that the evaluation of 0 at t requires to use all the
coefficients. This tends to be unstable due to the alternation of signs of
the coefficients specially when n is large (depending upon the computer).

The ill conditioning of the system can be virtually eliminated using the
technique we describe now.

Let Q, R be the Q-R decomposition of E. That is, let Q be an
n*n orthogonal matrix and R be a 3x3 upper triangular nonsingular matrix,
such that

_Ir
QE = ’Ol ) (2.2.5)

And let us partition Q in the following way

Q*
Q* = 1 (2.2.6)
Q3

where Qf is 3xn and Q§ is (n-3) xn.

Let
A = Q*A
QA A
R (2.2.7)
Q;A A2

where Kl € I? and KZ € 19_3.

The second equation now becomes:
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K, = 0 . (2.2.8)

The last equation is obtained using the nonsingularity of R. R 1is non-

s seny t" contains at least a P.-unisolvent set.

nonsingular since tl 1

We now use the first equation
KQh + Ea = z
A

1
a = z

[kQ, | KQ,] + qf}

2
KQZKZ + QRa = z ) $2.2.9)

Multipiying now both sides by QE we obtain

Q§KQ,A, + QjQRa = Q32
or
Q§KQ,h, = Qfz
since

Q3Q, = 0 .

Or, finally

AK2 = z (2.2.10)

hJ
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where

A = Q§KQ2
zZ = Qjz .
0 can be easily obtained from (2.2.9)

QlRa = z - KQZA2
or
QfQRa = QFz - QFKQ,A)

@ = R-l[Qi*z - QFRQ,A,] . (2.2.11)

For an efficient computer evaluation of the products QIz, ng, Q%I(Qz,

let us simply observe that

Q*z
1 = Q*z
Q32
QiKQ,  QiKQ,

Q5KQ;  Q3KQ,

Q*KQ

Now the computation of Q*z and Q*KQ is easily done since Q, Q* are
obtained by a product of Householder transformations that is available for the
computation of such products when using a package like LINPACK (see [ 12 1).

In order to solve (2.2.10) we first prove the following.

Lemma 2.2.1. The matrix Q*EKQ2 is positive definite.
Proof. The columns of Ql generate E and the columrs of Q2 generate EJ',
the orthogonal subspace of E. Then Q2 represents the orthogonal projection

onto E* written in terms of the basis given by the columns cf Q2. Thus -
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u-sztE"', x e« B3,

On the other hand the function

n
w(t) = 7§ uilt-tilz log It—til (2.2.12)
i=]1

with Uy € E being a spline function and

0 < J = pKu (2.2.13)

since from (2.1.9)

t i
@ = ] ougoe(t)
i=1

and J(w) cannot be zero since w 1is not a polynomial of degree 1. //

Now the system (2.2.10) can be solved using Cholesky's factorization.

As an interesting fact we miglit notice that A does not depend on the
data itself but only on the data points. So if many data taken at the same
data points are to be processed, the storage of the Cholesky's factorization of
A allows us to save a lot of computer time.

For a complete description of this method and a discussion of its numeri-
cal properties, see [ 21 1, [ 22 ], [ 43 ].

As we have already said, the computation of thin plate splines can be
very expensive if a large number of points is to be used. In the next section
we develop a practical method to avoid this problem in some cases. Here we
must also mention that the actual work towards the development of multidimen-
sional B-splines could be of great help when dealing with a large number of

points (ecf. [ 7 ), [ 8 ), [ 26 ).

Fab\
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2.3. A Practical Method for a Large Number of Poirts

In this section we assume that the number of data points is large and
well distributed within a rectangle [a,b] [¢,d] ¢ 1?. The idea (cf. [ 21 ],
[ 22 1) 1s to divide R, the given rectangle, into several smaller rectangles
overlapping each other and containing a reasonable number of points. We then
calculate a thin plate spline in each piece and stick the pieces together using
a partition of unity.
< a

More precisely, let a = a < *** < a <b, a<b <b, < eve bm =}

0 1 | 0 1

and c=c,<¢, < *+re<¢ <¢, d<«< do < dl < ser < dk = d be partitions of

0 1 k
[a,b] and [c,d] respectively such that

a, < bi i=0,...,m
c < d i=0,...,k
i 1 (2.3.1)
8, < b 1=0,...,m-1
Ci41 < d1 i=20,...,k .

These properties imply that

(a540y) 0 (8y10b5yy) ¢ 9
(cvdp) n (eyypady,) 4 0
m

121 lag,o;] = la,b]

k

jHO [ck’dk] = [¢,d]

. v i
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and
m k
U U [a,,b )x[c,,d,] = [a,b]x[c,d]
=1 gm0 11 37
The situation is illustrated in the following figure
d2
4
€2
G TTTTTTTT7
c [ 1L
Yy 7NN
AV
AV
emey LLLL LIV T
a=a, a, bo s, b1 bz-b
We now assume that the number of data points included in
Rij = [ﬂi'bi] x [cj'dj] is "reasonable." This means that: 1) The

computer time spent in the computation of a thin plate spline using that number
of points is reasonable according to the particular problem. 2) The number of
points is sufficiently large to represent the beh=rior of the function in
that region. 3) The number of points in the intersection of the regions is
enough to guarantee a smooth transfer from one region to another.

Of course all these conditions are extremely subjectivc and the user has
to be experienced to know how to apply these conditions to his particular

problem. L

Ta\
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Once the subdivision of R in R has been determined, let o Le

i3 1]
the thin plate spline interpolating the data on the points belonging to Rij'
That is,
J(oij) - min J) (2.3.2)

peD 2 L3(IR)

u(tk)-z

kel k

13

where

= € ! ke - x
Iij {ke{1,...,n} | ¢ Rij [ai,bil [cj’dj]} .

Thus oij is going to be a "good" approximation of the unknown function

on R In order to build an interpolant over R, we now "stick' the pieces

1j.

together using a partition of unity on the intersection of the rectangles.

Let w: R *R be defined by

[ (x-1)2(2x41)  x « [0,1]
wx) = 0 x>1 (2.3.3)
1 x <0
Then o € Cl(R) and
wix) + (1-w(x)) = 1 xe€eR . (2.3.4)
Theorem 2.3.1. Let Cav % be thin plate splines interpolating the data
over the rectangles RA and RB respectively.
117171
/11117
R / R nR.9/ R'B
A
11
/111711
[ 1 1]
b

8 0
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Let OAB be defined by
oA(x,y) (x,y) € R, \ Ry
OAB(x,y) = p(x)cA(X,y) + (l-p(x))UB(x,y) (x,y) € R, N Ry
[ o g(x,y) (x,y) € Ry \ R,
where
X-a
0
p(x) = w] ] .
\bo—ao)

Then OaB interpolates the data on RA ) RB and has continuous first

partial derivatives.

Proof. It is clear that © interpolates the data on R URB - RArwRB.

AB A

k
Llet t € RArﬁRB, then
k

oAB(t )

oMo, (%) + (@ - (")

o(Mye, + (- 0Nz, = 2,

where tk = (xk,yk).
Iy
Ve only need to prove the continuity of OsB and Yo along x = an»

X = bo. Both cases being similar we prove it along x = a,. We have

lim o, (x,y) = lim {p(x)c,(x,y) + (1-p(x))o_(x,y)}
xoat AP rat A B

0 0
= OA(aO,y)
90
Thus © is continuous across the line x = a,. For we have
AB 0 ox
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SNy
30 BOA(x.y)
Ix BY) = 0" (0, (x,y) + p(x) —H— +
90 (x,y)
- 0 () ———
30 90, (an,y)
lin —28 (x,y) = —A_0°°
4+ 0X ax
x+ag

and the result follows. //

BOB(x,y)
(1-p(x)) —

Using this method we can stick together all the pieces on each horizontal

strip and then proceed in the same way to stick the strips together.

result is the following

The final

( -
%30 t € Ry MR VR YRy YRy
w.x_j_a.j.ﬂ‘_' o (t) + l_w_x_-.i:'._l.‘} o (t)
bimagyy | 13 by- ai+lJ 1+1]
t € Rij nRi-c—lj \ (Rij+1URij-l)
Y i Y- Cia
G(t) = wlggioloy () + 1-o—= 0541 (0 (2.3.4)
v J 3y j v
€ Ry "Rygn N Rugag VR
S U1 [ [y'°i+11 Y~ %4
“Iv.-a o P EFRECO R Eal peppers 9 ,341(®)
172541) | (47 ( 37534
X~a y-c y-c
1+1 41| 1+1
+ [1—&» W (t) + |1-w O, 45,48
( {bi_ai+l]} dj-cj+1 i+lj j-cj+1]] i+13+1
‘ E Ry " Riy1g " Ryga "Ry

¥ J W)
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It has been proved by Duchon [ 14 ] that this interpolant keeps the
nice convergence properties of a thin plate spline. On the other hand our
numerical experience shows that it is a very appropriate method to deal with
a large number of points.

Remark. In the above formula we have made the convention

%,5 = Om1,j %.,0 = %41 - 9 -

3. A General Framework

The variational properties of mnatural poiynomial splines in one dimension
lead Atteia [ 3 ] to give a general variational formulation for spline
functions. This idea is to consider three Hilbert spaces X, Y, Z and two
continuous linear operators T, A from X onto Y and X onto Z respec-
tively, then given 2z € Z a general spline of interpolation is the solution to

min fInll?
pex
A(W)=2

All the known cases of splines satisfying variational properties can be
found using this general approach. For details see [ 19 ]. Nevertheless,
in some cases it is somewhat difficult or not natural to use some Hilbert
space to make the splines fit into this model. Tor that reason Duchon [ 14 |
introduced the semi-Hilbert space model where he works with semi-reproducing
kernels. In this section we are going to give a slightly different formulation

using reproducing kernels because of its immediate stochastic interpretation.

.

l s
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3.1. Reproducing Kernels and Spline Functions
Let H be a repfoducing kernel Hilbert space (see [ 2 1, [ 27 1)
that is, a Hilbert space where the evaluation functionals are continuous.

H must be a subset of ]Rx, the space of functions from X into R.
H ¢ R . (3.1.1)

Following Aronzajn [ 2 ] this implies the existence of a function

K, the reproducing kernel, such that

i) K(*y,x) € H any x € X
ii) K(x,y) = K(y,x) (2.1.2)
iii) f(x) = <f,K(',x)> any f € H

where <','> denotes the scalar product in H.
Let Kl, ey An be continuous linear functionals from H onto IR. And
let z €R" be an arbitrary vector of real numbers. We define the spline

A as

interpolating 2z 10t A

17 et % with respect to the functionals A

the unique solution to
min  |[u ]| . (3.1.3)

el
)\i(u)=zi

i=1l,...,n
The existence and uniqueness of G the solution to (3.1.3) is a result
of the projection theorem in a Hilbert space and the fact that {ueH |ki(u)=zi}
is a closed linear manifold in H.
The special interest of working with a reproducing kernel Hilbert space

is based in the following result.
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Theorem 3.1.1. The unique solution to (3.1.3) is given by

n
8(x) = z a, hi(x)

i=]1
where
hi(x) = )\i(K(.,x))
and Urs voey O satisfy the linear system

n
jzlaj Ai(hj) =z, i=1,..

Proof. Let A: H *-Rp be the linear transformation

A = O, ey A_GDT

(3.1.4)

(3.1.5)

(3.1.6)

It is clear that &, the solution to (3.1.3), is the orthogonal projec-

tion of O onto the linear closed manifold

M = {ueH | Ai(u)=zi, i=1,...,n}

exists and is unique if and only if M is non-void. Moreover, we have

the orthogonality of the projection:
<o-6,u> = 0 if A(W =0 .

In other words, & e N(A)' = R(A'). But

n
A" (X, ,e0e,x ) = Z x.h
1 n i=1 ii

where hi(t) = Ai(K(‘,t)) is the representation of Ai guaranteed by the
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Ritz theorem. Then there exist Gy voey O such that

n
8 = ] a

h
gmp +1

i

But & also belongs to M, hence
i

n
A (B) = a, A (h,) = z
jzljiJ

This completes the proof. //

As an example of use of this theorem we could try to get the thin plate

spline.
Of course here the functionals Al, cens An are given by
i
Ai(u) = u(t™) i=1,...,n . (3.1.7)
1.2 .3
Let us assume that {t*,t",t”} is a Pl-unisolvent set. And let
{pl, p2,p3} be a basis of P1 satisfying
% K k
p,(t7) p,(t7) = 3§ . (3.1.8)
=1 T 3 1]

Then it can be shown that (cf. [ 43 ]) D_ZLZCRZ) is a Hilbert space

with norm
2 3 k, 12 % 2 52 2 % 2
Ml = 1 [u(tH1® + 2L ZE:EaL ——1;- (3.1.9)
k=1 pelexty (T dy

and reproducing kernel

" )
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3
K(t,s) = <g; lt-s|? log |t-s| - -ﬁ; ) P, (t) Is-tklzlog |s-tkl
k=1
- -g; % Py (8) le-t*|? 10g |t-t¥| (3.1.10)
k=1
1 3 j 1,2 j 1 3
+ gm L0y (e) |77 1% 1og |el-t™] 4+ ] p () py(s)
i,j=1 k=1

Now using the theorem, the thin plate splines can be found solving the

linear system

n
L o K(r,td) = 2 j=1,0..m . (3.1.11)

3=1 !

3.2. The Stochastic Approach

Let w be a random process indexed by X with covariance
E[wswt] = K(s,t) (3.2.1)

and zero mean.
Let Lz(w) be the Hilbert space spanned by W s X € X and their limits

in quadratic mean. L2(w) has the inner product

[u,v] = E[uv] . (3.2.2)

As in the last section, we denote by H the Hilbert space with the'repro-
ducing kernel K.
It is a well-known result (ef. [ 10 ]) that H and Lz(m) are

isomorphic with the correspondence

f(x) = E[uku] (3.2.3)

feH — yel(w
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Let Al, caey An be the linear functional of thepreceding section. It
is known that Al’ very An can be defined on ® wusing the isometry. Thus

Ai(m) is going to be an element of Lz(w) defined by the equation
hi(x) = E[a&Ai(w)] . (3.2.4)

We consider now the problem of finding thebest linear estimator for

w, 8iven Al(w), ceey An(w). That is, we want to find

&, = Elo, | xl(m),...,xn(w)] . (3.2.5)

If we assume that the process is Gaussian, we can find &x as the least
squares predictor of W, i.e., as the projection in Lz(m) of w, onto
the linear space spanned by Xl(w), ceey ln(m).

Thus, E& is the solution to

| n
minimize Z o, A, (w) - w (3.2.6)
n o, 11 X
(al,...,an)eni i=1 12 ()
and
1'}1:
o = a, r, (w . (3.2.7)
X 121 ii

In order to find & i=1,...,n, we have to solve the system of linear

i)
equations given by the orthogonality conditions

n
E lizlaixi(w) - W, xj(m) = 0 j=1,...,n , (3.2.8)

or, equivalently,

n
jzl&i E[Ai(uokj(abl = E[mxkj(aD]

)

3

&
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R
)

and using the isometry again

n
L& (hi,hj>u = b .

i=1
Finally, using the fact that hj is the representer of Aj we get
n
121 6 Ayh) = b (§.2.9)

If we now assume that Zyy +eey 2z, are realizations of the random

variables Al(w), ceey An(m) we get

n
& = ) &,z (3.2.10)
X i=1 ii

where
A -1 T
a = I (hl(x), ceey hn(x))
in other words

b, = 2 g1 (b (®), oey B GDT . (3.2.11)

If we now go back to Theorem 3.1.1 we see that
8(x) = &

X

Theorem 3.2.1. Let w be a random Gaussian process indexed by X with zero

mean and covariance function K(¢,*). Then

6(x) = Elw, | A=z, 1=1,...,n] . (3.2.12)

For further results see | 1, | 1, | I, [ ].
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4, Constrained Interpolatior

In the preceding sections we have considered the problem of interpolation
of an unknown function given its values at n are generally distributed points
of the Euclidean space ]Rz. The hypothesis made on the function is generally
one of the kind: "f 418 smooth." This meaning, most times f € D—ZLZsz)
or something similar, but in all cases we have assumed that f belongs to
some linear space and have used as interpolant the minimizer of a semi-norm
over the linear manifold of interpolants belonging to that linear space. As a
result, the interpolant is linear as a function of the data and the algorithms
necessary to compute it require the solution of matrix problems. Even if this
is sufficient for many problems, there are others where some nonlinear constraint
is naturally posed, as in the case of data coming from a positive function.
More generally, we could assume that some property of the function is known in
the form f € C where C 1is a convex closed set of D-ZLZCRZ). The problem
is to find a "good" interpolant satisfying the nonlinear constraint f € C.

This problem has recently received much attention in one and two dimensions.

The interested reader should see the literature [ 18 ], [ 32 1, [ 35 1],

[ 36 ], and the references therein.

4.1. The Positive Thin Plate Spline

For these lectures we would only be interested in positive thin plate
splines (cf. [ 35 ], [ 36 1). Let 210 25 ey 2 be positive real numbers
and let C be a compact subset of :mz. We deline the Positive Thin Plate

Spline as the unique solution to the minimization problem (cf. Th. 4.1.1).
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minimize J(u) (4.1.1)
uep L2 (R?)
u(tj)-zj, j=1,...,n
u(t) 20, teC

where, as in the preceding sections J is defined by

2 2
2 2 |2 2
I = [ ay +23_1~‘__] +[a_}l} .

’ ax2 X3y ay2

We first give an existence and uniqueness theorem.

Theorem 4.1.1. Let C be compact and assume that {tl, t2, ey tn} contains

at least a Pl-unisolvent set. Then there exists a unique solution of (4.1.1).

-2, 2
Proof. Let Pl be the set of polynomials of degree 1, then H = EL—%}Szﬁl
R2 1
is a Hilbert space continuously imbedded in 3%;—-. The set
1

s = {pepi?(®r? M=z, 1=1,...,0; ()20, tec)
is clearly non-void and

S = S+ Pl < H

is closed since S + P1 is closed i1 P .

R | -1
S+P = {0 84(z) n §7U0,EN} + B

i=] ¢t teC
R2
P
Then there exists a unique element ¢ € H minimizing J({I) over §

and H 1is continuously imbedded in

(J(1) 41s & norm in H.) The uniqueness of © comes from the fact thai
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P, n {ucn'zl.z(nz) Iu(ci)-o, i=1,...,n} = {0} .

1

since {tl, .,t7} contains a P;-unisolvent set. //

It is also possible to give a general characterization »f the solution
O. We give this characterization in Th. 4.1.2 but we omit the proof. The
interested reader is referred to | 35 ].

Theorem 4.1.2. Let 0 be the unique solution of (4.1.1) and define

A = {tec | o(t)=0} . (4.1.2)

A 1s a closed set. Then there exist a positive measure Vv with support

(V) cA and n real numbers X ceeny An such that

1.
§
o = - A, § K, - V¥, + p (4.1.3)
*
P T L 2

where p € P1 and Kz is the elementary solution of the biharmonic operator

Ky(r) = g; Pe(r’ log ©) . (4.1.4)

Here * denotes the product of convolution. //

This last result is only of theoretical importance since it has not been
possible to use it in & numerical algorithm allowing 0 to be found. 1In the
next section we present a numerical procedure allowing the solution to be found.

For convergence pruperties of constrained splines see [ 32 ], [ 35 ].

4.2. The Dual Algorithm
Our aim in this section is to present a special version of the general

algorithm by Laurent to solve constrained problems by dual iteration (cf. [ 20 ]).

O 4
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We also mention the special numerical methods used to compute the kth iterate.

The idea of the algorithm is to construct a sequence of half-spaces Dk

and solve in each iteration the constrained problem.

(p,) min J(u) . (4.2.1)
k pep L3 (R?)
u(ti)-zi. i=1,...,n
ueD,

The sequence {OK} is then shown to satisfy the following properties

(cf£. [ 20 1)

1) J(ok) < J(o, ,,) s J(O)

k+l

11) D, > {ucn‘sz(nz) [u(e) 20, tecl

ii1) “m Ok =g
k*
where the convergence can be taken over HZ(C).
The starving point of the sequence is the unconstrained thin plate spline.

That is, the solution of

o) = _min J(w) . (4.2.2)
peD ‘L2(R?)
u(ti)-zi, {=1,...,n

Step 0. Let bo € R? be a solution of

o.(b.) = min o(t) . (4.2.3)
00 teC
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1f co(bo) 20 then 0 = 0, and the algorithm stops. Otherwise set k = 0

0
and proceed to step 1.

Step 1. Let
D, = {uen‘szmz) | u(bO)ZO} (4.2.4)
and let o be the unique solution of

uwinimizr. J(u) . (4.2.5)
pep?L? (K?)
i
u(t )-zi, i=1,...,n

ueDd,

And set b1 as a solution to

ol(bl) = min ol(t) . (4.2.6)
teC
Step 2. Let k + k+l.
1f we are lucky enough ck(bk) 20 and 0= o0,. Stop.

Otherwise, let

. =2.2,_2

B, = D n {weDLYURY) | u(b)20) (4.2.7)
and let °k+1 be the solution to

ainimize J(u) . (4.2.8)

ueDp?L?(R?)
u(ti)-zi, tel,...,n
u e ﬁk

Using now the Kuhn-Tucker conditions we know that there exist positive

j=1,...,n, such that if we set

constants Vk K

j’
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-2.2,_2 k k
Disy pen 4%(r% jz vy u(bi)=0 (4.2.9)
we have
J(o,,,) = min J(u) . (4.2.10)
k+1 uED'2L2 (mz)
i
u(t )=zi, i=1,...,n
HeDn
Now define bk+l as a solution to
Ok+1(bk+1) = fig ok+l(t) (4.2.11)

and go to step k.
The preceding calculations are repeated until a convergence criterion is

satisfied. Generally this criterion is given in the form

(b -€ (4.2.12)

1 Prap) 2

where € > 0 1is a tolerance given by the user.

Remarks

(1) The computation of oy is not as hard as it seems to be since

Gl(bo) = 0 . (4.2.13)

Otherwise the constraint € D1 would not be active and the solution

might give ol(bo) > 0 which is impossible since in that case 0g = 03+

Thus is indeed the solution to the simple interpolation problem

9

€ 3
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minimize J(w) . (4.2.14)
ueDd2L?(R?)
w(th=z,, 1=1,...,n

u(bo)=0

And cl is of the form

T 12 i 2
o, (t) = izl Ai!t -t|€ log [tT-t] + alt-bol log It-bol + q(t)

with q < Pl.

Then ¢, is obtained solving a linear system.

1

Similar considerations apply for the computation of n in step k.

k+1
(2) From the last remark it appears that each iteration costs the solution
of one or two linear systems where the matrices which depend on the knots are
different from one step to the other. This could be very expensive to do unless
we know something more about the systems to solve.
Here the key remark is that the difference between the original matrix

(to compute o© and the matrix used in the computation of Oy is only given

)
by a rank 1 perturbation. Then we can use this fact to solve the system in
step k using the solution in step 0 and the Cholesky factors obtained there.
(For details see [ 35 1).

In a recent Ph.D. thesis presented at the University of Wisconsin, M. Villa-
lobos has used a different approach to give an approximate solution to (4.1.1).

His approach basically consists in the discretization of the constraints, imposing

a regular grid over C and replacing u(t) 20, teC by

U(gk) > 0 , g €G

G: grid over C. (For details, see [ 36 ]).

[ S
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5. Thin Plate Smoothing Splines

In the preceding sections we have considered the solution of some inter-
polation problems in two dimensions. In all the cases we have assumed that
the data are exact and we wanted to obtain a smooth surface passing through the
points (ti,zi) € IR3. Our aim in this section is to present the case of
noisy data. Thus, in the first part we present the theoretical results giving

a characterization of the thin plate smoothing spline and in the second part

we give the numerical methods used in the computation of such splines.

5.1. Existence, Uniqueness and Characterization

As in Section 1.2, we assume the model

2, = £(th) + e, i=1,2,...,n (5.1.1)

where f € D-ZLZ(RZ) is unknown and the Ei's are supposed to be realiza-
tions of independent identically distributed Gaussian variables.
In order to approximate f, we introduce the thin plate smoothing spline

of parameter X > 0 as the unique solution to (cf. [ 13 ], [ 14 ])

15 1 2
ninimize AWG) + = z (u(t )—zi) . (5.1.2)
peb L2 (R?) i=1
As in the one-dimensional case, X controls the tradeoff between the
smoothness of the solution measured by J(u) and the approximation to the

data measured by

weh - 2p? .

=R
[
New o
—

. V4



- 42 -
ORICIIN. & . 7
OF FULUR Jusids

In order to prove the existence and uniqueness of o the solution

n,A’

to (5.1.2), let us first define the nxn symmetric semi-positive definite matrix

 as

yT Qy = min J(w) . (5.1.3)
ueD “L2(R?)

i .
u(t )=yi, i=l,...,n

nyly represents the value of J a: ﬁy, the thin plate spline inter-

polating Yy at ti, i=1],...,n. Given that y - oy is linear, the trans-

formation y - J(oy) is quadratic hence rh. existence of Q.

Now we write (5.1.2) in the following way

n .
min nin a +3 ] aeh-z)?
yeR'  pedL(R?) i=1

W(EH=y,, 1=1,...,n

n
f )
= min min NG + =) (y,-2,)
yeE' uED'sz(le){ ngp 11

i
u(t )=yi, i=1,...,n

2

= min A min J(w) + %- E (yi - zi)2
yell pep?L?(R?) 1=1
u(ti)=yi,i=1,...,n)
n
= min AyTKZy + l-z (y,-2 )2 . (5.1.4)
n, 1 41
ye i=1

The solution ¥ to this problem is easily found by differentiating and

setting the gradient equal to zero. We obtain

M +1)§y = z . (5.1.5)
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And o,y 1is obtained interpolating ?i at ti, i=1,....,n using
»

a thin plate spline. As in the one-dimensional case, (5.1.5) is only of theore-

tical use as we shall see later. A more practical result is given by:

1, .e., t®} contain at least one P -unisolvent set.

Then there exists one and only one solution On. to (5.1.2). Moreover, there
»

Theorem 5.1.1. Let {t

exist n+3 real numbers Al, eesy AL al, Oys Qg such that Oy A has the

n »
expression
s 1,2 1
Gn,x(t) = 121 Ailt-t |© log |t-t*| + wty + oty + oy (5.1.6)

where t = (tl,tz).

The coefficients A ceny An’ o, 0y, 03 are the solutions of the system

1’

s i3 1 i
8mA, + jzl Aj K(t™-t?) + wt] + oty + a3 = z,, 1=1,...,n
n
I aed = 0
j=1 3
(5.1.7)
n
h|

ALt o= 0
jzl 32
)

A, = 0
j=1 9

Proof. See [ 13 1, [ 14 1.
In the next section we use this formulation to compute the smoothing spline.

Now we are interested in obtaining an interpretation of ¢ as a filtering

n,A

process. To do that, let N < Py € sre g L be the eigenvalues of { in

increasing order and let Q be the orthogonal matrix diagonalizing {. Then
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Q = QI Q* (5.1.8)
where

L = diag (Dl, ceey pn)

Then (5.1.5) becomes

§ o= @ +mDl: (5.1.9)
where
y = Q*
z = Q*z .
Hence
S - (5.1.10)
i l+n)\p:L i * T

But it has been observed, and proved in some cases [ 30 ], [ 39 ] that

p, Vv C

ih
1 T

s (5.1.11)

then

j, v Taer R
i 1+cai” "1
which turns to be again a low-pass Butterworth type filter. For details see

[ 351, (31, [43].

5.2. The Computation of X and AN
’

As in the one-dimensional case, the estimation of A from the data is a
very delicate problem. One of the methods that is becoming the most popular
to solve this problem is the Generalized Cross-Validation which amounts to

minimizing the GCV function



aNE " A G s

- 45 -

QRIZRIL UL T
AE POCH QLALITY
n
1 2
- z (t ) - zi)
V() = (5.2.1)
{1 - —tr (Am)]
where A()) 1is given by
AD = (T +m@)r . (5.2.2)

Thus, we need an algorithm to compute O and one to compute

n, A
tr. (A())). We begin with the computation of on e
?
As we have seen in Th. 5.1.1, the computation of A involves the solu-
3
tion of a linear system in the n+3 coefficients Al’ N An; Aps @y, Oge

The linear system to be solved is given by equations (5.1.7) or, using the

notation of Section 2.2, in matrix form

(8mA + K)A + Ea = 2z (5.2.3)

E' A = 0 .

Thus, the linear system to be solved has the same form as (2.2.2) and

using the same technique, let Q, R be the QR decomposition of E

v = [}

where Q* 1is nxn and can be decomposed as

*
Q* = Qi
Q3

and QI is 3xn, Q5 is (n-3)xn.
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Now setting
. A QXA
A = ~1 - 1 ‘l ™ Q*A ,
Az QEA J

the equations become

=t
L]
o

_Q§(8m>\1+K)Q21~\2 = Qkz (5.2.4)

2
Ry = Qfz - QIKQZKZ

This linear system can be easily solved using Cholesky's decomposition
and all the remarks given in the case of interpolation apply to this case.

The computation of tr. (A()) requires additional work. In [ 35 ]
we proved that in some cases the eigenvalues of { can be well approximated
by those of a fourth-order differential operator, but in two dimensions this
is too complicated to calculate and a direct evaluation of the eigenvalues
is necessary. We first obtain an expression for ; to do this we consider
the thin plate spline interpolating y = (yl,...,yn). Thus its coefficients

61, cony 6n; Bl, 82, 83 satisfy the system

KA+ EB = y

T

E'A = 0
and using the notation
Q*A K
A = Q*A = 1 = ~l ’
QEA A2

L g
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we get
Q3K Q,4, = Q3 (5.2.5)
A, = 0

Now we observe that from Th., 2.1.1 we have

T
J = A KA
(cy)

= A7Q*Kk QA (5.2.6)
= A % A
805K Qy8,
Using now (5.2.5) we finally get

T -1
Jo) = yQy(Q3K Q) "oy
and

R = Qua§KQYMas . (5.2.7)

Finally, we observe that the eigenvalues of §! are those of Q’EKQ2

except for the first three that are equal to zero, then
-1 -1
tr. (I+nAQ) = 3 4 tr. (I-+nXQ5KQ2) . (5.2.8)

Thus, if we want to compute tr. (A())) many times, as is necessary when
minimizing the GCV function, we first compute the eigenvalues of Q;KQ2 and
then use them to compute tr. (A(A)). For more details and numerical experiences

the reader is referred to [ 35 ], [ 36 ], [ 43 ].
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6. Non-variational Techniques

As we have pointed out before, the methods we have exposed here are
essentially generalizations of splines in one dimension using the variational
properties of those functions. We have chosen this way because of its close
relationship with gtochastic estimation and because it appears to be at
present the only technique 1sed for scattered data (when referring to splines).
Many other generalizations are possible, and we wiil briefly describe two of them

in these sections. For a detailed discussion see the references below.

6.1. Tensor Product Splines
The first generalization of one-dimensicnal splines to many dimensions has
been given using tensor products. More precisely, consider a square [a,b]x[c,d]

2
in R and two partitions, a a, < a, < <a b; ¢ = cp € ey < e < < d

of [a,b] and [c,d] respectively. Also let Bi, i=1, ..., ntl and

B§, j=0, ..., ml; the B-splines based on the knots

{al,al,al,al,az,aa,...,an,an,an,an} and {cl,cl,cl,cl,cz,c3,...,cm,cm,cm,cm}

respectively.

n+l
As we have already said (cf. Section 1.1), {Bl is a basis for the

i}m0
space of twice differentiable piecewise cubic polynomials based on the knots

{al, ceny an}.

We now define a space of tensor product splines S on the grid (ai,cj),

i=1,...,n; j=1,...,m as the linear space spanned by the tensor product

n+l m+l
of the basis {Bl} ; { 1} That is, s € § if and only if

i'1=0" jiy=0°
n§1 mfl 1 2
s(x,y) = ) a,, B,(x) B,(y) (6.1.1)
4=] gmo 3 17 3

¥ s Y
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for (x,y) € [a,b]X[c,d] and aij EZRZ for i1 =0, ..., n+l; 3 =0, ..., ml,
0r, in other words,
n+l m+l 1 9
s = ) ] a,B BB . (6.1.2)

It 48 well known (ef. [ 1 ), [ 9 1, [ 26 ]) that § 1is a linear
space of dimension (n+2) X (m+2). Thus,the complete determination of s from
interpolation conditions requires to give 2(n+m+2) additional boundary condi-
tions. A usual choice for these conditions is:

Hermite type
as

x (al,cj) = given constant , j=1,...,m
3s
3;-(an,cj) = given constant , j=1,...,m
o8 .
By (ai,cl) = given cons:ant , i=1,...,n
38
3y (ai,cn) = given constant |, i=1,...,n
32g

Ix3y (al,cl) = constant (6.1.3)
%8 (4 ) = tant

3%0y a,,¢ constan
a2

——-; (an,cl) = constant

98
33y (an,cm) constant

As in the one-dimensional case these conditions produce optimal convergence

rates but as it was already pointed out, they require some additional informa-
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tion on the function that is not always available. (For other choices see
( o 1, [ 26 D.
The functions in the space S are piecewise bicubic. This means

that in each subre.tangle [ai,a the function is a bicubic

w1l X legaey ]
polynomial, i.e., a function of the form

P(x,y) = qy(x) + yq(x) + yzqz(x) + y3q3(x) (6.1.4)

where 9g» 93 955 95 azxe cubic rolynomials.

Moreover, this function s € S has continuous derivatives %%, %?,
2% 3% 9%

L ’ .
oxdy ax2 ay2

Finally, it is interesting to say that the solution of the linear system

in a =0,...,o+1, 1 =0,...,n+1, can be efficiently performed using

very specialized techniques (cf. [ 1 ), [ 9 1, [ 26 1). For further

details the reader is referred to the extensive literature in this area.

6.2. Multidimensional B-splines

A more recent approach to the problem of multidimensional data has been
given by DeVore, Dahmen, Micchelli and others [ 7 }, [ 8 ], [ 26 ].

This new approach is attracting much attention recently, mainly from potential
users in finite elements codes.

The idea of this method is to generalize the B-splines to several dimen-
sions. The idea is interesting because the two main problems arising with thin
plate splines, that is, full system of equations and instability in the evaluation,
could be solved when using a local support basis. Unfortunately, until now
the theory of multivariate B-splines seems too 2complicated to be ured in

practice. For details the reader is referred to [ 7 ], [ 8 ] and the
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references therein. Here we only give the basic idea of the construction.

To do this we go back to the simplest one-dimensional case, the P-splines of

degree 1. "nese are defined as

M(xl, X5y Xq3 t) = § (t-x)+

. x (6.2.1)
X)rXpeXg

where we have made explicit tre dependence of the B-spline on X1 Xyy Xq,
the knots of the spline. A typical plot of M 1is given below

— -+ —a
x1 x2 x3

Of course the use of (6.2.1) to define the multi-dimensional B-spline

would require the definition of a multivariate divided difference. Thus, this

way seems difficult. However we can still generalize (6.2.1) 1f we observc

that we can give a geometric interpretation of this definition. To do that,

let (xl,yl), (xz,yz), (x3,y3) be three points in general position in ]RZ

(i.e., they form a triangle)

f

-

)
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Now for given x tIR2 define M(x) as the volume in m2 of the set

I, = {y | (x,y) €T} {6.2.2)
where
T = Triangle with vertices (xl,yl), (xz,yz). (x3,y3)
Then

M(x) = volml(Ix) . (6.2.3)

It is clear that M has the same form of M(xl,xz,x3;') except maybe
for its maximum value. Thus (6.2.3) is an alternate definition for M. Clearly
this function does not depend on (yl,yz,y3) but only on the volume of T.

The generalization to IRs is now clear. Llet ¢ be a unit volume simplex

in IRS"‘k and define for x GIRS the function

MO = volpk (weRS | (x,s0) . (6.2.4)

This function 1s a "smooth" piecewise polynomial with support given by the
convex hull of the projection of ¢ in RS.

Most of the classical results on one-dimensional B-splines can be obtained
with these new functions. For example: recurrence relations, integral forms,

etc. See [ 7 1, [ 8 1, [ 26 ].

6.3. Conclusion and Comments

Many other subjects might have been included in a complete treatment of
two-dimensional or multidimensional splines. The subject is an active area of
research and the references given below are only a sample of the extensive
literature in the area. The interested reader should consult the symposium
on multivariate approximation and related research meetings to have a better

idea of the most recent results.

. A 2
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